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Motion of two spheres in a perfect incompressible fluid is considered. Kinetic energy 
and hydrodynamic forces are computed for the case when the distance between the 
spheres is small, in particular when the spheres touch each other. Singularities arising 

in the velocity field on contact of the spheres are determined. 
Hicks [l] obtained the kinetic energy of the fluid for the spheres moving along the 

line-of-centers (the line joining the sphere centers). The kinetic energy for the case 
when the spheres move in the direction perpendicular to the line-of-centers and the dis- 
tance separating them is much larger than their radii, is known from [2]. 

1. Velocity potential. Two spheres move in a perfect incompressible fluid 
which is at rest at infinity. The fluid motion is assumed potential. Since the problem 

is linear, the case when the velocities of the spheres 

‘; ? 

% % 

@%!Y 

are coplanar, is sufficient to obtain the velocity 

potential. 

ef 
% 

We choose the spherical system of coordinates 

a e ri, 8,, ‘pi with the origin at the center of the i th 

uz sphere (i = 1, 2) and the positive directions of 
their polar axes oriented towards the neighboring 

sphere (Fig. 1). Azimuthal angle cp i is measured 

Fig. 1 
from the direction perpendicular to the velocities 
of the spheres, and the positive direction of the 

polar axis of the ith coordinate system is taken as positive direction of the projection 
ui of the velocity on the line-of-centers. Positive directions of the projections v, and v, 
of the velocities of the spheres on a line perpendicular to the line-of-centers, are chosen 
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so as to coincide. 
Fluid velocity potential (9 should satisfy the Laplace’s equation in the region situated 

outside the spheres, as well as the following boundary conditions : 

Aa, = 0, dW&-J Ri = ui cos 0, + vi sin Bi sin [pi 

0 4 0 when ri --f 00 

where Riis the sphere radius. Method of images can be used [l-4] to solve the problem. 
The potential is obtained by the method of consecutive approximations and is represented 
by the sum of series in terms of functions @A 

~>(~:,+~~+-t~+*..)+(~~+~~+~~+...r (1 A? 

These functions are harmonic outside the i th sphere and satisfy the following condi- 
tions on the i th sphere: 

N?f jar, = ui cos0, fvisin6isincpr (1.2) 

d@~/dri=--S@D4_r/ari (Tl=i,2,...) (I.31 

0; + 0 when ri + CC (n=O, 1,. . .) 

Here and henceforth li = 1, 2 and k # i. 

We begin by considering the motion of spheres along the line-of-centers (vl= v,=O). 
As we know [l-4], in this case the functions @,in will represent the potentials of the 
dipoles situated within the spheres on that line, and we can seek them in the form 

@‘in = cz; (ri cos 8, - a,,) (ri2 - 2r, ain cos ei + ains)+ (I.41 

Inserting (1.4) into (I. 3) we obtain equations defining the unknown coordinates and 
the dipole strengths a;, (a - ukn_r) = RiZ, ai, = 0 (1.5) 

a; = ai-3 (&, / &)3, 2at = - USiRiS (2.6) 

Here a denotes the distance between the centers of the spheres. These recurrent rela- 
tions are solved most simply by following a method due to Murphy [5] who solved the 
problem in electrostatics of determining the potential of two charged spheres, namely 
by determining not the coordinates ai, themselves, but their products. Let us introduce 
new coefficients A; and B”, defined by 

2a& = - Z-Q (Ri / Afd3, 2a.L,,_-f = - ~r(RdB:;)S (4.7) 
Then by (1.6) the dipole coordinates are 

Coefficients 4: and Bix are obtained from (1.5)-(1. 8) in the form 

(‘t. - 0)Af;-= Z= (z + R, /‘R,) - P(G + Ri ,‘R,), 

(T - 0)B;, = (T” - T-“) a / Ri (1.9) 
where z is a root of the equation 

a2r = (tR, + R,) (rR,f+ R,) (1.10) 

Indeed, inserting (1. H) into (1.5) we obtain the following recurrent relations 

R,B;% f R,B;_, - -c&4;_+ Ri A;, + R,Ab_, - - aB; (1.21) 

with initial conditions 
Ai= 1. =1: = (a? - Rl.2 )I RIR,; Bi = 0, 4; = a/R. 

1 (1.12 
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Relations (1.11) are solved for Ai and Bi . In particular, for A; we have 

A; - A;_,, (a2 - R12 - R,2) I RIR, + A;_, = 0 (1.13) 

and an analogous equation can be obtained for BA . In the case of two spheres, the 

general solution of the recurrent relation (1.13) with arbitrary conditions is given by 

C#+CZT-n where z is defined by (1.10). The constants cl and c2 are obtained from the 

initial conditions (1.13) and the final result has the form of (1.9). 
The series (1.1) whose functions are defined by (1.4) is convergent everywhere except 

at the point 6, = 0, 7i =R,of contact of the spheres. In the latter case the point ajn 
of accumulation of the dipole coordinates passes into the point of contact of the spheres. 
This is precisely the reason why the method of expanding the series in terms of spherical 

functions used in [2] fails, when the distance between the spheres is small compared with 
the radius, When the point of contact is deleted, the potential series converges approxi- 

mately as 1 / G’. When the spheres do not touch, then from (1.5) and (1.6) it follows 
that the series converges approximately like a geometric series whose exponent decreases, 

rapidly with the increasing distance between the spheres. 

2, Tangential velocity on the Burface of the Bpherec in contact, 
When (1.5) and (1.6) are taken into account, the potential formulas (1.1) and (1.4) on 

the surface of the spheres become much simpler and are 

When the spheres are in contact,(l. 10) gives T = 1 and (1.9) yields 

BL =nalR,, 11 Ai =l+na/Rk (2.2) 
Insertion of (2.2) into (1.8) gives the dipole coordinates 

ai2n = R, / (1 + R k / an), ui2n_1 = Ri (1 - R k / an) in = 1.2,. -!.I (2.3) 

Since the problem is linear, it is sufficient to consider separately the collision of the 

spheres and their motion in the same direction. Assuming therefore that Ur = f u2 

and introducing the variable E = tg l/,6, we obtain (from (2.1)-(2.3) and (1.7), 
(1.8)) the following expression for the tangential velocity ~a at the surface of a sphere 

Us = + Ui sin 8i + $UisinBi (1 + t2)” X 

ny - 1 

> [ 1 + (ny - l)a~a]“‘z ’ ’ = 2 ‘“‘;; “I (2.4) 

Here the plus sign corresponds to the spheres moving towards each other with equal 
velocities and the minus sign corresponds to their motion in the same direction. 

In the first case, the asymptotic behavior of the series appearing in (2.4) as E + 0 

(0 --f 0) is described by 
~a = ‘ui’k / (Rr + Rs)Bi + O(const) 

which is easily obtained using the Euler-Maclaurin formula. 
Thus when the spheres approach each other up to the point of contact, a plane source is 

formed at this point and ejects the fluid into the tangential plane. 
When the velocities of the spheres in contact have the same direction, i.e. when 

Us = -u,, we find it convenient to use a coordinate system moving with the spheres. 
Relation (2.4) will then become 
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ve = -3/2 (1 + E2)” f (E) ui sin ej (E = 02 1/24 (2.5) 

We shall show later that for E + 0, 

(2.7) 

From the formulas (2.5) and (2.7) we see that the tangential velocity at the surface 
of a sphere decreases exponentially with decreasing distance to the point of contact. 

When the radii of the spheres are equal, the velocity near the point of contact varies as 
exp(--n/e)/8”/* and the fluid stagnates near the point of contact. 

The asymptotic formula (2.7) is obtained from (2.6) by means of the following Pois- 
son’s summation formula [S]: 

f(4)= 5 g(S, n---l/r)= 5 

co 
e-2xilJy e.-*ni’xg (& 2) dx (2.8) 

?t=--03 1=--W 
s 

--co 

Let us denote the integrals in (2.8) by II. Since g (E, 5) = - g (E, -z), we have 

I, = - Z-1. We make the substitution xE~ = t in the integrals, and we have 

t (1 + t2)-%iat dt (2.9) 

Before changing to the new contour of integration, we must integrate (2.9) by parts. 
and modify the resulting expression for the integrand at the point t = i with o > 0 in 
such a manner, that the integral along the imaginary axis to the point t = i will be 

convergent. The expression for II then becomes 
03 

zt=+ u 1 + it 

_-03 (1 + t2p + (, +at2p* ,lot dt I’ (2.10) 

To transform(P.lO)we choose the following contour: -R to 4-R along Im t = 0. a 
circular arc Ret”, 6 E [0, l/zn], a segment from iR + E to i f E, a circular arc eei@+ i. 

6 E [-n, 01, a segment from i - E to iR - E and a circular arc R&s, 6 E [I/& n] 
(R and E are real numbers). The function (1 + P)V assumes the value of - i (y2 - I)‘/, 
on the segment iy - E and the value of i (y2 - 1)1/p on the segment iy f e. When R+a 

and E + 0 , we have by the Cauchy’s theorem 

co 

2iU 
I,== c l+P(Y+l) 

; (1 +YHY2--p e 
-=ZJ dy 

Performing the change of variable Y = 1 i- riz and expanding the resulting integrand 
function into a series, we obtain the first terms of the asymptotic formula for Zr as 
u-+ 00 (E-0) 

I, = 1/3in v/-i (%gr - 4nl) exp 
( i 

+ r-“E-‘l’ (2.il) 

where we have assumed that c = - 2nZ / jl~. The formula (2.11) is valid only for 
Z < 0. Utilizing the fact that ZL is an odd function of 1 and making a single assumption 
that 1 = f 1, we obtain from (2.11) and (2.8) the formula (2.7). 
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3. Kfnetic energy of the fluid. As we know [3, 41, the kinetic energy T 

of a perfect incompressible fluid can be expressed in terms of the potential of its bound- 

aries 
(3.1) 

Motion of two spheres can always be represented as the sum of motions in three, mutu- 

ally perpendicular directions, one of which coincides with the line-of-centers. Kinetic 

energy of the fluid at an arbitrary motion of the spheres is equal to the sum of its com- 

ponents appearing in the above motion [l, 21. This additive property can be proved 

either by symmetry considerations [l, ‘21, or proceeding from the simplest potential pro- 

perties and Green’s identities. The additive property of kinetic energy enables us to 

compute it for just two cases:motion of the spheres along the line-of-centers, and their 

motion in the direction perpendicular to this line when the velocities are coplanar. 

When the only motion is that along the line-of-centers, insertion of (1.2) and (2.1) 

into (3.1) following the computation of the integral 

n 

s (Ri2 - al,‘) cos 0 sin I3 
& =2 

Q{JRi 2 - 2Riaj,, cos 0 + a3,,2)Yz RiZ 
I, 

yields the following expression for the kinetic energy of the fluid 

(3.2) 

This problem was solved by Hicks in a somewhat different manner [l, ‘21. Here al 

are given by (1. ‘7) and (1. 9) as functions of ‘G, and (1.10) connects a with ‘t . 
Kinetic energy is a quadratic form of the velocities 

-$ T = Ajula + 2Bu,u, + A2~22 (3.3) 

The coefficients A i and B can be written, in accordance with (1.7) and(3.3), as 

(3.4) 

where A f, and B ; are given by (1.9). 

When the spheres are in contact, the coefficients Ai and B become particularly sim- 

ple, provided that (‘2.2) is taken into account 

,L%_++jl(l+~ R1n+kRz)-O) B=i@)(&fajl 

where 5 (x) denotes the Riemann’s zeta function. In particular, when both 

of equal radius, we easily obtain 

11 - R3 (‘/at (3) - 2/J s 0.385 R3, B = 0.1255 (3)R3 z 0.150 

coinciding with the analogous result given in [l]. 

spheres are 

R3 
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4, Forcr~ of hydrodynamic interrctlon betwsen two lpherr: at 
small distances. Since the motion of spheres in a perfect incompressible fluid 
can be described in terms of Lagrange’s equations [3, 41, it follows that a$!’ / aa denotes 
the force of hydrodynamic interaction between two spheres. Hicks established [I] that 

the series defining the coefficients of the quadratic form &-/ aa become divergent 

when the-spheres touch each other. Two leading terms of the asymptotic expression for 
the sums of series can be obtained in the following manner. Denoting by f (n, r) the 
general term of one of the series for &Ii / da or dB / da obtained by differentiation 
of (3.4) term by term, we note that the functions 

5 f(n7 r), 

-W/(+-1)1 
2 [f(n, r) -f(% I)1 

n=E[l/(r-l)] 7l=1 

where E (1 / (T - 1) d enotes the integral part of (T - 1)-l, are bounded when 

z + 1. Moreover, since f (?z, ‘c) tends to zero uniformly in z as n + 00 , the differ- 

ence f (n, ~1 - f (n, 1) tends to zero uniformly in n as 7 + 1 despite the fact 

that f (n, T) is not uniformly continuous in T. By virtue of the above remarks, the last 

two series in the identity 

g(n,7)=Er1y;(n, I)+E~'~~l)lIf(n,~)-~(~,l)l+ ; f(n,4 
n=1 n=1 ?I=1 n=E[r,/(r-01 

can be replaced by integrals. Consequently the formula 

(4.1), 

; f (n, 2) = E[l$-l)‘f (n, 1) - l’(Y1)l (s, 1) dx + 5 f (z, z) dJ: + 0 (z - 1) 
7l=l n---l 1 I 

holds. 
Applying the latter formula to the series (3.4) defining the coefficients of aT / aa 

we find that the series in the right side of (4.1) decomposes easily into a divergent 
series plus a constant. The integrals appearing in (4.1) are computed and only the values 
of the two highest order terms with respect to (IY - 1) are retained in the resulting 

expressions. After several tedious manipulations we finally obtain 

p = W, f(R, + R,), d = =I3 - l/r In 2 - c, 6 = a - R, - R, 

ada- 
’ dAi -d+$I+ n(n+i)(n--1+3PlRi) 1 

P (n+Plw ---z- 1 (4.2) 
?I=1 

-++d++In++(l - WlRlRa) 5 (3) 

where c is the Euler’s constant. When two spheres of equal radius move towards each 
other with equal velocities, at small distances we have, by (4.2), (3.3) and (3.4) 

aT I &2 GZ [r/s In (a I R - 2) - 0.09481 npu2R2 (4.3) 
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Formulas (4.2) show clearly that the difference dA i / da - dB / da remains finite 
when a + R, + R,, i. e. when the spheres are about to touch each other. It can be 

shown that this difference is always positive, i.e. spheres moving in the same direction 
draw apart irrespective of the values of their radii. From (3.3), (3.4) and (4.2) it follows 
that two spheres of equal radii in contact and moving in the same direction will repel 
each other with a force equal to 

iIT 1 &Z = (“/,C (3) - ln2) npuaRa z 0.2084npuaRa (4.4) 

6. Velocity potrntfal in the case of spheres moving in the 
direction perpendicular to the line-of-centerr. When the spheres move 
in the direction perpendicular to the line-of-centers (uI = U, = 0), the zeroth appro- 
ximation for the potential, satisfying (1.2), is given in the ith coordinate system in the 
form 

@k = -3 visint$sincpi, Q)o” = -.R<vr 
risjn13isincp. 1 

2 (r.a - 2ar 0 + az)“’ 
(5.1) 

I i cos I 

As we know [l, 21, the potential can be represented by a set of dipoles situated within 
the spheres along the line-of-centers and orthogonal to it. Our problem is to determine 
this set. To solve this problem it is expedient to introduce the coordinates of the dipoles 
as functions of the dimensionless variables z,.The dipole coordinate bf, = b,, (a, ICY, 
, . . ..z.,) can be found analogously to that of (1.5) 

b<, = Riaz, (a - bkn$l, bi, = 0, Z,E [O,l] (n=1,2,.. .) (5.2) 

Clearly, we always have bi, < us,,, whereas bi,, = U{, only when q = I,.. . , 

%I = 1. We can write 
Qi, = ri sin ei sincp, (ri2 - 2ribin cos ei + b;,,)-s/Z (5.3) 

to describe the dipole in the zth sohere whose coordinate is bi,. 
It can be shown that for fixed n , Eq. (1.3) is satisfied by tne functions 

(5.4) 

where X, = 1 for the functions appearing outside the integral sign. We easily see that 
any Qi appearing in (1.3) can be constructed by applying the formulas (5.4) n times 

to the tnctions given in their zeroth approximation by (5.1). Function <DX on the other 

hand, requires the introduction of the coefficients 
represent a generalization of the coefficients LX: 

a”, = bk (a, x1, . . . ,z,,_~) which 
appearing in the course of solution of 

the problem of motion of the spheres along the line-of-centers 

2P &, = v~R~~-~” Rkzn (uklbi2bk3...bi2n)3 

2j3&+, = vJ~~-~” Rt-“” (ailbi*b,. . .bizn_J3 

(5.5) 

(here the argument zm = 1 in every bi, (m= 1,2, ) ). 
We note that 1 fit ) < 1 CCI 1 and, that the equality sign appears only when r”‘l Z 1, 

. . . ,z,-~ = 1. The new coefficients must be supplemented by the operator L TL defined by 
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(n= 1, 2,. . .) 15.6) 
0 

Using now (5.1) and (5.4)-(5.6). we can write @A in a compact. analytic form 

CD; = -“lzviRi3 Q6, n cDi = -L, . . . LJ3;L, Q’, (5.7) 

and this completes the solution of the problem of obtaining the velocity potential. 

To compute the kinetic energy of the fluid, it is sufficient to know the potential Q, 
on the spheres. The latter assumes a simpler form if we take into account the fact that 

QE, = (bin I R,)“Qi when ri = Ri 

and consequently, @k,_l = -L,...L,_$, Q;. Th en, by (1.3) and (5.7). the potential 
on a sphere is 

1 

@ (Ri = - f v,Ri3Q: jRi - i L1 . . . L,_& (2Q: - 1 Qh,, dx, ) lRi (5.8) 
n=1 0 

6. Kinetic energy of the fluid when the :pherem move in ths 
direction perpendicular to the line-of-centerr. When the spheres move 
perpendicularly to the line-of-centers and their velocities are coplanar (ul = u2 = O), 

the kinetic energy is obtained from (1.2), (3. l), (5.3) and (5.8). An assumption that 

( 2Qb - 

1 

c Qinx, 
;, 

dx, sinOisinrp,ds = 

is sufficient to obtain the kinetic energy in the form 

2n 

J& T = i ($ Vi2Ri3 + 2 L, s . . L,-,pznvi) 
i-1 7Z=, 

(6.1) 

where the operator L, is given by (5.6), the coefficient PA is known from (5.5) and 
&, is equal to the unit operator. 

It can be proved that the series in the right side of (6.1) converges faster than the 
corresponding series in the right side of (3.2). the latter converging approximately as 
1 / n3. First, we show that the continued fraction bi ,defined by (5.2) can be expanded 
into a (n - 1) -dimensional convergent power series in ZK~,...,CZ,_~ with nonnegative 

coefficients. This can easily be done by expanding consecutively the continued frac- 
tions bil, bi2,... into a series using the formula (5.2). The fact that all bin can be 
expanded into converging power series with nonnegative coefficients in an (n - 1) - 
dimensional hypercube x1 E IO, 1 I,. .., z,_~ E [O, I] implies, that 1 p&I defined 

by (5.5) can also be expanded into a convergent power series with nonnegative coeffi- 
cients, in the same hypercube 
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I Pi I = 2 cl, ,..., m,_t XT . . . x?;‘, 
mi....,m,_t 

Ck,,...,m,_, > 0 (6.2) 

Simple computations based on (5.6) and (5.2) yield 

where CC: is defined by (1.6) for ui --vi. The inequalities obtained show clearly that 

the kinetic energy expressed by the series (6.1) is majorized by the kinetic energy 
expressed by the series (3.2) for any distance between the spheres, provided that U+ = 
= pi. Consequently, the series for kinetic energy converges faster in the case of motion 
perpendicular to the line-of-centers, than in the case of a motion along this line. 

Formulas (5.5) , (5.6) and (6.1) yield the coefficients A i’ and B' appearing in the 

expression for kinetic energy T = A,‘+% + ~‘v,Q f Aa’~s. For the spheres of 
equal radii. these formulas yield 

A' = 0.347npRa, B' = 0.067npR3 

for the case of a contact. 
When two equal spheres in contact move with equal velocities in the direction per- 

pendicular to the line-of-centers, the kinetic energy of the fluid is found to be equal to 

T = 0.a2a~~u~R3. 

The author thanks V. G, Levich, A, M, Golovin and A. G. Petrov for discussing results 

of this paper, 
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